Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312704, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615260

RESUMO

Sputtered indium tin oxide (ITO) fulfills the requirements of top transparent electrodes (TTEs) in semitransparent perovskite solar cells (PSCs) and stacked tandem solar cells (TSCs), as well as of the recombination layers in monolithic TSCs. However, the high-energy ITO particles will cause damage to the devices. Herein, the interface reactive sputtering strategy is proposed to construct cost-effective TTEs with high transmittance and excellent carrier transporting ability. Polyethylenimine (PEI) is chosen as the interface reactant that can react with sputtered ITO nanoparticles, so that, coordination compounds can be formed during the deposition process, facilitating the carrier transport at the interface of C60/PEI/ITO. Besides, the impact force of energetic ITO particles is greatly alleviated, and the intactness of the underlying C60 layer and perovskite layer is guaranteed. Thus, the prepared semitransparent subcells achieve a significantly enhanced power conversion efficiency (PCE) of 19.17%, surpassing those based on C60/ITO (11.64%). Moreover, the PEI-based devices demonstrate excellent storage stability, which maintains 98% of their original PCEs after 2000 h. On the strength of the interface reactive sputtering ITO electrode, a stacked all-perovskite TSC with a PCE of 26.89% and a monolithic perovskite-organic TSC with a PCE of 24.33% are successfully fabricated.

2.
Opt Express ; 32(6): 9837-9846, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571208

RESUMO

Obstruction is inevitable and will significantly impact the actual output performance of photovoltaic modules, even jeopardize their operational safety. We introduced a layer of bubbles into photovoltaic glass. These bubbles can alter the path of incident light, while the internal reflection at the glass/air interface enables the redirected light rays to have longer lateral propagation distance, circumventing the obstructions. The optimized photovoltaic glass with a bubble diameter of 1.8 mm and a surface density of 16 cm-2 enables the light intensity underneath a 6.6 × 6.6 cm2 obstruction to reach 21.83% of the incident light intensity. This enhancement permits a partial shading of the photovoltaic module, increasing its output power by ∼20.8% and decreasing the reverse bias voltage on the shaded cell by ∼1.4 V.

3.
Small ; 18(50): e2205128, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36310144

RESUMO

The typical thickness of the photoactive layer in organic solar cells (OSCs) is around 100 nm, which limits the absorption efficiency of the incident light and the power conversion efficiency (PCE) of OSCs. Therefore, light-trapping schemes to reduce the optical losses in the thin photoactive layers are critically important for efficient OSCs. Herein, light-trapping and electron-collection dual-functional small organic molecules, N,N,N',N'-tetraphenyloxalamide (TPEA) and N,N,N',N'-tetraphenylmalonamide (TPMA), are designed and synthesized by a one-step acylation reaction. Driven by strong intermolecular force, TPEA and TPMA tend to self-aggregate into hemispherical light-trapping nanodots on the photoactive layer, resulting in enhanced light harvesting. Meanwhile, TPEA and TPMA demonstrate high electron mobility and excellent electron-collection ability.  Compared with the device without cathode buffer layer (CBL, PCE = 14.09%), PM6:BTP-eC9 based OSCs with TPEA and TPMA light-trapping CBLs demonstrate greatly enhanced PCE of 16.21% and 17.85%, respectively. Furthermore, a record PCE of 19.02% can be achieved for PM6:BTP-eC9:PC71 BM based ternary OSC with TPMA light-trapping CBL. Moreover, TPMA exhibits a low synthesis cost of only 0.61 $ g-1 with high yield. These findings could open a window for the rational design of multifunctional CBLs for efficient and stable OSCs.

4.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144909

RESUMO

Bismuth triiodide (BiI3) is a particularly promising absorber material for inorganic thin-film solar cells due to its merits of nontoxicity and low cost. However, one key factor that limits the efficiency of BiI3 solar cells is the film morphology, which is strongly correlated with the trap states of the BiI3 film. Herein, we report a coordination engineering strategy by using Lewis base dimethyl sulfoxide (DMSO) to induce the formation of a stable BiI3(DMSO)2 complex for controlling the morphology of BiI3 films. Density functional theory calculations further provide a theoretical framework for understanding the interaction of the BiI3(DMSO)2 complex with BiI3. The obtained BiI3(DMSO)2 complex could assist the fabrication of highly uniform and pinhole-free films with preferred crystallographic orientation. This high-quality film enables reduced trap densities, a suppressed charge recombination, and improved carrier mobility. In addition, the use of copper(I) thiocyanate (CuSCN) as a hole transport layer improves the charge transport, enabling the realization of solar cells with a record power conversion efficiency of 1.80% and a champion fill factor of 51.5%. Our work deepens the insights into controlling the morphology of BiI3 thin films through the coordination engineering strategy and paves the way toward further improving the photovoltaic performances of BiI3 solar cells.

5.
Small ; 18(22): e2201820, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502139

RESUMO

The organic-inorganic halide perovskite solar cell (PerSC) is the state-of-the-art emerging photovoltaic technology. However, the environmental water/moisture and temperature-induced intrinsic degradation and phase transition of perovskite greatly retard the commercialization process. Herein, a dual-functional organic ligand, 4,7-bis((4-vinylbenzyl)oxy)-1,10-phenanthroline (namely, C1), with crosslinkable styrene side-chains and chelatable phenanthroline backbone, synthesized via a cost-effective Williamson reaction, is introduced for collaborative electrode interface and perovskite grain boundaries (GBs) engineering. C1 can chemically chelate with Sn4+ in the SnO2 electron transport layer and Pb2+ in the perovskite layer via coordination bonds, suppressing nonradiative recombination caused by traps/defects existing at the interface and GBs. Meanwhile, C1 enables in situ crosslinking via thermal-initiated polymerization to form a hydrophobic and stable polymer network, freezing perovskite morphology, and resisting moisture degradation. Consequently, through collaborative interface-grain engineering, the resulting PerSCs demonstrate high power conversion efficiency of 24.31% with excellent water/moisture and thermal stability. The findings provide new insights of collaborative interface-grain engineering via a crosslinkable and chelatable organic ligand for achieving efficient and stable PerSCs.

6.
ACS Appl Mater Interfaces ; 14(1): 1280-1289, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978428

RESUMO

The development of new electron transporting layer (ETL) materials to improve the charge carrier extraction and collection ability between cathode and the active layer has been demonstrated to be an effective approach to enhance the photovoltaic performance of organic solar cells (OSCs). Herein, water-soluble carbon dots (CDs) as ETL material have been creatively synthesized by a vigorous chemical reaction between polyethylenimine (PEI) and 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) via a simple one-step hydrothermal method. Taking full advantage of the high electron transfer property of PTCDA and the work function (WF) reduction ability of PEI, CD gained high electron mobility due to its large π-conjugated area and reduced the WF of indium tin oxide (ITO) by 0.75 eV. As for the photovoltaic performance of devices, inverted OSCs based on CDs have achieved a high power conversion efficiency (PCE) of 17.35%, exhibiting no burn-in effect with no reduction in PCE after more than 4000 h of storage. The successful application of CDs in OPV has developed a new avenue for designing efficient ETL materials that benefits the photovoltaic performance of OSCs.

7.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958190

RESUMO

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

8.
ACS Appl Mater Interfaces ; 12(28): 31459-31466, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551514

RESUMO

Suitable donor and acceptor distribution in the blended photoactive layer benefits the charge transfer and exciton separation to boost the performance of organic solar cells (OSCs). Herein, we propose a universal solvent-flushing method for building component distribution in photoactive layers based on the different solubilities of the donor and acceptor in acetylacetone (Acac). The donor and acceptor concentration distribution through the photoactive layers is investigated by the time-of-flight secondary-ion mass spectroscopy, and the surface concentration changes are examined by contact angle measurements and atomic force microscopy tests. The charge-transfer properties of OSCs before and after Acac flushing are further investigated by the rectification ratio and light intensity-dependent Jsc and Voc measurements. For inverted OSCs based on PBDB-TF:IT-4F, the power conversion efficiency (PCE) enhances from 12.87 to 14.05%, and for a PBDB-TF:Y6-based device, the PCE also significantly increases from 15.40 to 16.51% because of greatly enhanced Jsc and FF, benefited from enhanced charge transport and suppressed charge recombination by solvent-flushing. Our findings suggest that solvent-flushing is a simply processed and easily controlled method to achieve vertical component distribution in photoactive layers to boost the performance of OSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...